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J. Phys. A:  Math. Gen. 13 (1980) 919-932. Printed in Great Britain 

On renormalisation of Acp4 field theory in curved 
space-time: 11 

T S Bunch? and P Panangaden 
Department of Physics, University of Wisconsin-Milwaukee, Milwaukee, WI 53201, USA 

Received 9 May 1979, in final form 30 August 1979 

Abstract. An explicit renormalisation of all second-order physical processes occurring in 
A44 field theory in conformally flat space-time, including vacuum-to-vacuum processes, is 
performed. Although divergences dependent on the definition of the vacuum state appear 
in some Feynman diagrams, physical amplitudes obtained by summing all diagrams which 
contribute to a single physical process are independent of these divergences. Consequently, 
the theory remains renormalisable in curved space-time, at least to second order in A.  
Renormalisations of the mass m, the coupling constant A and the constant 6 which couples 
the field to the Ricci scalar are required to make two- and four-particle creation amplitudes 
finite. Vacuum-to-vacuum processes are made finite by renormalising coupling constants in 
a modified Einstein action which includes terms which are quadratic in the curvature. 
Dimensional regularisation is used to obtain expressions for the formally divergent renor- 
malisation constants for m, f and A.  Those for m and A are the same as in Minkowski space. 
In order to calculate the divergences in G3(x, x'J, a new momentum-space representation, 
valid in conformally flat space-times, is developed for the Feynman propagator. This is a 
generalisation to curved space-time of the usual Minkowski space momentum represen- 
tation. 

1. Introduction 

In the preceding paper (Bunch et a1 1980, hereafter referred to as I), we studied the 
quantum theory of a scalar field in curved space-time with quartic self-interaction, A44. 
'The main purpose of that paper was to generalise normal ordering of field operators to 
curved space-time and to show that this makes all S-matrix elements and expectation 
values of the stress tensor finite to first order in A.  We also gave a preliminary discussion 
of some of the problems that arise in the renormalisation of second-order S-matrix 
elements, notably the appearance of divergences involving a quantity which depends on 
the definition of the vacuum state, and we indicated that nevertheless the theory 
remains renormalisable in curved space-time to second order in A .  The purpose of this 
paper is to verify this explicitly in an arbitrary conformally flat space-time. 

We have divided the discussion of this paper into two parts. The first part (§ 2) is 
concerned with the renormalisation of Feynman diagrams having two or four external 
lines, i.e. diagrams which represent the creation of two or four in-particles from the 
in-vacuum. (The construction of the in-vacuum and in-particle states is discussed in I.) 
The second part of the discussion, presented in FI 3,  deals with the renormalisation of 
vacuum-to-vacuum processes, that is, with (in/S/in) where lin) is the in-vacuum and S is 
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the S-matrix operator. We find that the normal ordering we have performed removes 
the divergences from all closed loops which begin and end at the same point (in other 
words, from G(x)  = G(x, x)  where G(x, x‘) = ( in iT(~(x)~(x’ ) ) l in ) )  but is not sufficient 
to make all vacuum-to-vacuum processes finite. There is one diagram (see figure 1) 
which is unaffected by normal ordering and which in Minkowski space can be cancelled 
by adding an infinite constant to the Lagrangian or Hamiltonian density. In curved 
space-time it is not possible to remove divergences in this way since the energy of the 
vacuum has physical significance, being coupled to the geometry of space-time through 
Einstein’s equation. The correct procedure for removing these divergences is by 
renormalising coupling constants in Einstein’s equation or, equivalently, in the Einstein 
action. In 5 3 we show that this is conveniently done by recognising that the sum of all 
vacuum-to-vacuum diagrams is related to the effective action for the field theory. 

One of the principal calculations of the paper, the evaluation of the divergences in 
G3(x, x’) which arises in figure 7 in I, appears in an appendix at the end of the paper. 
This calculation relies on a representation of the Feynman propagator as an integral 
over an n-dimensional momentum space. An outline of the derivation of this represen- 
tation in a conformally flat space-time, which is sufficiently general to enable us to 
obtain the structure of the divergences in G3(x, x’), will be given in the remainder of this 
section. Further details appear in Bunch and Parker (1980) where a momentum space 
representation valid in arbitrary space-times is derived and its relationship to the 
proper time representation (DeWitt 1975) and to the field theory formalism based on 
the concept of adiabatic particle states (Parker and Fulling 1974) is discussed. Consider 
an n-dimensional conformally flat space-time with metric: 

g,, = Cb)77,” (1.1) 

where T , ~  is the Minkowski metric. The Feynman Green’s function G(x, x’) for a free 
scalar field satisfies the wave equation: 

UG(x, x’)+(m2+[R)G(x, x’) = -ig-’/*(x)S(x, x’) 

g = det(-g,,) = C”(x) .  

(1.2) 

(1.3) 

where 

Then, using the expression for the Ricci scalar in a conformally flat space-time: 

4(n ( n - 2 ) / 4 0 ~ ( 2 - ” ) / 4  R=- C 
2-n  

we find that c ( x ,  x ’ )  satisfies the equation: 

(1.5) 

~ F v a , & ~ ( x ,  x’)+ C[m2+ ([-((n))R]c(x, x’) = -iS(x, x’) (1.6) 

where 

Equation (1.6) is satisfied by c(x, x’) in either of the variables x or x’. It will be 
convenient for us to consider &(x, x’) as a function of x‘ for each fixed point x, the 
reason being that in 0 2 and in the appendix in which the divergences of G3(x, x’) are 
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evaluated, G3(x, x’) is considered to be a distribution in x’ for each fixed x. The 
divergences in G3(x, x’) arise when an integration over x’ is performed in a neighbour- 
hood of (x’-x)’ = 0, i.e. in a neighbourhood of the light cone of the fixed point x. If an 
analytic continuation of the metric to a metric with (negative definite) Euclidean 
signature is carried out the singularities appear when integrating in a neighbourhood of 
the point x ’  = x. Although we will not explicitly perform such an analytic continuation, 
we mention it since it could be used to provide a more rigorous mathematical 
justification of our arguments. In particular we are going to look for a solution of (1.6) 
valid in some neighbourhood of (x‘ - x)’ = 0 and it will be convenient to think of this as 
being a neighbourhood of a point. 

First expand the functions C and R in (1.6) in Taylor series about the point x’ = x. It 
turns out that only the first term in each expansion affects the divergent part of e ( x ,  x’) 
so that we may consider the equation: 

v f iYaW~ay6(x ,  x ’ ) +  C ( x ) [ m 2 + ( 5 - 5 ( n ) ) ~ ( x ) ] c ( x ,  x’) = -iS(x, x‘). (1.8) 
Express c ( x ,  x ’ )  as a Fourier transform according to 

(1.9) 

with inverse 

c ( k )  = -i G(x ,  x’) exp[-ik(x’-x)]d“x’ (1.10) I 
where it is to be understood that the scalar product k(x‘ - x) is defined in n-dimensional 
Minkowski space. Thus 

k(x’-x)EvfiYkCL(X’-X)Y. (1.11) 

[k2 - M 2  - ( f - ( (n))CR]d(k)  = 1 

Equations (1.8) and (1.9) lead to an equation for the Fourier transform c ( k ) :  

(1.12) 
where 

c = C(x)  R = R ( x )  M’ = C(x)m2 k2  = ~ , , k ~ k “ .  (1.13) 

Thus we obtain 

(1.14) 

Notice that the order k-4 term comes from taking C(x’) = C(x)  and R(x’) = R(x)  in 
(1.6). Higher order terms in the expansion of C(x’) and R(x’ )  give contributions to 
(1.14) which are of order k-6 or higher. These terms do not affect the divergences in 
G(x, x ’ )  and so need not be calculated explicitly. Following I we define GR(x) by 

Then we find: 

(1.15) 
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where 

lim GR(x, XI) = GR(x). (1.17) 

‘The terms in (1.16) involving Euler’s constant, y, are required to cancel similar terms 
which arise when the n-dimensional momentum integrals are performed in the limit 
x)+x .  

X’”X 

2. Four- and two-point functions 

In this section we study the divergences that arise in second-order matrix elements that 
lead to the creation of two or four particles from the vacuum. Various disconnected and 
one-particle reducible diagrams are obtained which are products of first-order contri- 
butions and will not be considered. They do, however, give finite, non-zero contribu- 
tions that must be included if one is interested in calculating the amplitude for these 
processes. 

The normal ordered interaction Hamiltonian density, including renormalisation 
counterterms is, to second order in A, 

where we have used the same notation as in I. GD(x) is the divergent part of the 
coincidence limit of G ( x ,  x’) and is given by (in n dimensions) 

We also write G(x) for G ( x ,  x’)I,,=, and GR(x) for G ( x )  - GD(x) (see (1.15)). Second- 
order matrix elements between states in the ‘in’ Fock space are evaluated by using 
Wick’s theorem on time-ordered products of field operators. 

Performing this reduction and retaining only one-particle irreducible ( IPI) diagrams 
gives the following contributions to the four-particle amplitude: 

and 

( 2 . 3 ~ )  

(2 .3b)  

where & ( x ) ,  etc, represent external wavefunctions. The factor of 72 arises from 
performing the Wick reduction. These two terms correspond to figures -1 and 5 in I. We 
have excluded from (2.3) a factor 4! which comes from permuting the external !ines. 

Figure 4 in I represents a divergence that must be removed by the coupling constant 
renormalisation shown in figure 5 in I. In I we discussed this divergence briefly. Here 
we present a slightly different derivation. As before we use dimensional regularisation 
to exhibit the divergence5 in terms si quantities that have poles at II = 4, where II is the 
dimensional parameter. 
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In Birrell and Taylor (1979) it was argued that the divergence in G2(x, x’) can be 
represented as a S function times an infinite number, reflecting the fact that the 
divergence arises owing to the coincidence of x and x ’  when the integrations are 
performed. We may thus write 

(2.4) 

where c is the infinite number. We know that G(x, x ’ )  satisfies the inhomogeneous 
wave equation 

(2.5) 

G2(x, x ’ )  = cg-1’2(x)G(x, x’)+finite term 

(o+m2+,$R)G(x, x’) = -i$(x, x ’ ) .  

B ( x ,  x ‘ )  = p 2 ( x ) 6 ( x ,  x ’ )  

( O + m 2 + ( R ) - T ( x ,  x ’ )  = --G(x, x’). 

In this equation we have: 

(2 .6)  

to represent the covariant delta function. Differentiating with respect to m2: 

aG 
(2.7) 

Since this is a differential equation for aG/dm2 and since G(x, x’) is the Green function 
for the wave operator we can immediately write the solution for aG/am2 as 

am 

Since we only want the divergent part of G2(x, x”) we may replace dG/am2 by the 
divergent part of its coincidence limit and use (2.4) in the right-hand side of (2.8), giving 

aGD(x) ---i &(x, x”)Jg(x”) d”x” = -ic. (2.9) -- am I 
Using (2.2) we obtain 

1 c=: 
87r2(n -4). 

The divergence in (2.2) is thus 

- 9 iA2  I Jg(x) dnx&(x)  . . . &(x) 
32rr2(n -4) 

and must be cancelled by the counterterm 

(2.10) 

(2.11) 

(2.12) 

From (2.11) and (2.12) we obtain the result 

(2.13) 
9 

8 2 ( n  -4). 
zy) =I 

This agrees with calculations performed in flat space-time (Collins 1974) and de 
Sitter space-time (Drummond 1975). Our result shows that coupling constant renor- 
malisation is unaffected by curvature even though we have a field theory that is not 
conformally invariant and in which there is particle creation by the gravitational field. 
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We turn now to the two-point function. When the Wick reduction is performed one 
obtains various terms represented by figures 6-9 of I. As before, we consider only   PI 
diagrams. We see that the normal ordering renders the self-closing loops finite and 
replaces them by GR(x). We note again that if one is interested in the actual amplitude 
to create two in-particles one must add the finite contributions from the disconnected 
and the reducible diagrams. The divergences that remain in the above diagrams must 
be cancelled by renormalising the physical parameters in the theory. 

We have then the following integrals representing the Feynman diagrams in figures 
6-9 of I respectively: 

-% dg(x)g(x') d"x d"x'4,,(x')4,,(x')GR(x)G2(x, x') 
2 

-3A2 I dg(x)g(x') d"x d"x'~, ,(x)~,,(x ')G3(x, x ' )  

-ih' 1 dg(x )d"x~ , , (x )4 , , (x ) [m2Z~22 '  +cRZi2'].  
2 

(2.14) 

(2.15) 

(2.16) 

(2.17) 

(2.14) is still divergent because it contains G2(x, x') and (2.16) is divergent because it 
contains the infinite (at n = 4) number Zk". We can evaluate the divergence in (2.14) 
using (2.4) and (2.10) and that in (2.16) is given by (2.13). Combining (2.14) and (2.16) 
we finally obtain 

(2.18) 

We thus have a divergence depending on GR(x). This is a quantity that depends on the 
choice of the in-vacuum and cannot be cancelled by any counterterm. In order that the 
theory be renormalisable it must cancel a contribution from (2.15). It is to check this 
cancellation that one requires the evaluation of 2:'' and G3(x, y ) .  

Birrell and Taylor (1979) have shown how one can isolate the divergences in 
G3(x, x') by expressing it as a distribution involving the delta function and its deriva- 
tives. In I we discussed this issue and concluded that G3(x, x') could contain a term 
proportional to GR(x). In the appendix the evaluation of G3(x, x') is given in detail. 
Here we note that the calculation yields 

The coefficient of the O'$(x, x') term gives the wavefunction renormalisation. This 
can be seen by noting that in flat space-time one can Fourier transform (2.19). The 
Ub(x,  x') would then become a term in p 2  (where p is the four-momentum) in the 
proper self-energy. This would require a rescaling of the propagator if one imposes the 
condition that the full propagator have a pole at p 2  = m2 with residue one, the usual 
condition for fixing wavefunction renormalisation. 
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If we insert (2.19) in (2.15) and use the 6 function to perform one of the integrals we 
obtain terms involving m2, R and GR(x). The term involving GR(x) is 

(2.20) 

which precisely cancels (2.18). We have thus shown that the state-dependent diver- 
gence has cancelled. The remaining terms result in the renormalisation of m2 and [. 

The term involving o)g(x, x') becomes, when integrated, 

Since q5p,(x) is a solution of the free wave equation, we have 

04,,(x) = -(m2+5R)4p,(x). 

Thus the divergence in (2.15) proportional to m2 is 

(2.21) 

(2.22) 

Comparing this with (2.17) gives us the result 

15 
2%- 2 +  64n4(n - 4) 256r4(n - 4)' 

(2.24) 

The calculation of Zi2) is virtually identical and gives a value of 2:" that is most 
compactly written as 

(2.25) 

In our treatment of the two-point function we considered the special case where two 
particles are created from the vacuum. In this situation wavefunction renormalisation 
turns out to be unnecessary. If, however, figure 7 in I is a subdiagram of a larger 
diagram then we obtain an additional divergence that has to be cancelled by rescaling 
the propagator. The full propagator G(x, x') is given (to second order in A )  by 

(2.26) 

where Z1 is the wavefunction renormalisation constant. There is no wavefunction 
renormalisation in first order so in second order in A the relevant terms are 

If we consider (2.15) with propagators instead of wavefunctions for the external 
lines we have 

(2.28) 

where an extra factor of two is introduced to take into account the possibility of 
permuting external legs. If we insert (2.19) in (2.28) and note that G(y' ,  x') satisfies the 
inhomogeneous wave equation we get a term 3A2G(x, x')/[256r4(n -4)] which can 
only be cancelled by rescaling the propagator. This rescaling is the same for any 
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space-time and in the appe_ndix we make use of the known rescaling in Minkowski space 
to fix the coefficient of 0'6(x,  x') in (2.19). 

We have shown in this section that the mass, wavefunction and coupling constant 
renormalisations are the same as in flat space-time (see, for example, Collins 1974). In 
addition we find that in curved space-time a renormalisation of the coupling to the 
scalar curvature is required. Drummond (1975) has also considered A44 theory in de 
Sitter space-time. However, his theory was massless and canformally invariant and 
hence did not have any mass renormalisation or any state-dependent divergences in the 
intermediate steps. 

The divergences we have considered so far seem to be the only basic ones in the 
theory. Divergent diagrams in higher order would only arise because they contain 
subdiagrams of the type we have discussed here. Furthermore, the topology of the 
diagrams is the same as in  flat space. Thus we expect that a proof of the normalisability 
to all orders, by induction, would be a straightforward modification of the usual flat 
space proofs if one ignores vacuum polarisation diagrams. 

3. Vacuum polarisation 

In I we discussed the generalisation of normal ordering to curved space-time and 
showed how this rendered self-closing loops finite. In second-order processes there are 
vacuum diagrams that are not made finite by normal ordering (see figures 1 and 2). 

Figure 1. 

Figure 2. 

Second-order diagrams that are disconnected are products of first-order diagrams 
that are rendered finite by normal ordering and we do not consider them further. There 
are also vacuum diagrams arising from the counterterms (figures 3 and 4). 

Figure 3. 
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Figure 4. 

We do not find that divergences in all vacuum diagrams cancel. Instead we shall 
show that all state-dependent divergences do cancel and then argue that the remaining 
divergences can be removed by renormalising coupling constants in the Einstein action. 

Performing the normal ordering renders the self-closing loops finite and replaces the 
G(x)  factor with GK(x).  The contribution of the diagrams in figures 1-4 is 

(injS‘2’lin) = -- G4(x, x ’ ) J g ( x ) g ( x ’ )  d”x dnx’ 
3 A 2  4 I 

-- 3iA ’Zil) I G i  (x)Jg(x)  d”x. 
4 (3.1) 

We may write 

G(x ,  x’) = GD(x,  x‘) + GR(x, x ’ )  (3.2) 

where GR(x, x ’ )  is defined by (1.16). The term in G4(x, x ’ )  is 

G4(~ ,~ ‘ )=G4D(~ ,~ ’ ) i -4G: , (x ,~ ’ )GR(~ ,~ ’ )+6G: , (x ,~ ’ )G i (~ ,~ ’ )+ .  . . . (3.3) 

The last two terms in G4(x, x ’ )  involve G i  and G i  and are finite. If we use (2.4), (2.10) 
and (2.13) in (3.1) we see that terms involving G i  all cancel. We note that Gh is the 
same as the divergent part of G3 with the GR term omitted. ‘f we use (2.19) in (3.1) and 
rewrite the term in O’GR as follows: 

O’GR(X, x’) lx ,=x = K’GR(x, X ’ ) I ~ ~ = ~  - [ m 2 + 5 R ( x ) ] G ~ ( x )  (3.4) 

K’  = 0’ + m + [I? (3.5) 

where K’  is the wave operator 

we see that all terms in GR(x) also cancel, leaving only a term in G;  and one in KGR. 
The term in GL can only involve m 4 ,  mZR and R2 since there is no state-dependent 

piece in Gn itself. We will show that KGR is also independent of the choice of vacuum 
state. 

We can write 

K’GR(x, x ’ )  = K’(G(x, x ‘ )  - GD(x,  x‘)) (3.6) 
where the prime on the K signifies that it acts on x ’ .  Thus 

K’GR(x, x ’ )  = -ig-”2(x)S(x, x ’ )  -K‘GD(x, x ’ ) ~  (3.7) 
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and hence 

Using the momentum space representation for & (see (1.16)) 

(3.10) 

d"k exp[ik(x'-x)] 
-iS(x, x ')-i([-t(n))CR - I (27r)" (k2 -MM2)2  

(3.11) 

It now follows from (3.7), (3.10) and (3.11) that K'GR(x, X ' ) I , ~ = ~  involves only m 2  
and the Ricci scalar R. 

Drummond and Shore (1979) have discussed figure 1 for a massless theory in de 
Sitter space-time. They find that it is finite at n = 4  but in our theory (which is not 
conformally invariant) there are divergences not removable by renormalisation or 
normal ordering. 

Now that we have shown that the divergences which remain in second-order 
vacuum-to-vacuum processes depend only on the mass of the field and the Ricci scalar, 
R, we will outline how these divergences are to be removed. The field theory based on 
the Lagrangian density given by equation (2.1) of I is incomplete because we have not 
yet indicated how the quantum matter is to be coupled to the geometry of space-time. 
In Schwinger's formulation of field theory this is achieved by coupling the effective 
action, W, of the field theory to the gravitational action, SC.  The effective action is 
related to the vacuum persistence amplitude by 

eiw - - (outlslin). (3.12) 

Inserting a complete set of in-states, 

elw = (outlin)(inlSlin)+l dp(p1) dp(p2)(0utlp1, p z ,  in)(in, p1,p21Slin)+. . . . (3.13) 

Every physical process occurring in (inlSlin), (in, pl ,  p21Slin), etc, is modified by a factor 
which may be expressed as er where r is the mathematical equivalent of figure 1. (This 
argument for factoring out vacuum-to-vacuum processes can be found in many 
textbooks on quantum field theory; see, for example, Schweber (1961, p 470).) Thus 
we may rewrite (3.12) as: 

e i w  = er(outls'lin) (3.14) 
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where 9 is obtained by modifying the S matrix so that it no longer gives rise to any 
diagrams containing figure 1. We have shown that once the state-dependent diver- 
gences in r are cancelled with similar divergences in other vacuum-to-vacuum 
diagrams, the remaining divergences, rD, are expressible in terms of the constant m and 
the Ricci scalar R. Thus we may write 

(3.15) 

where rR is the finite remainder from figure 1, and (outlglin) has been made finite, at 
least to second order, by our earlier work. The coupled theory is now unchanged if we 
replace W + S G  by 6’ + 9~ where 

(3.16) 

(3.17) 

S G  = -(8rG)-’ [A - $R + $A I R 2  + $AzR @Rap + $A3R “p”RR,p,s]JgO d”x (3.18) I 
where terms quadratic in the curvature are included to absorb divergences. If desired, 
their renormalised coupling constants can be set to zero. Moreover, we have shown that 

rD=i\  (a1m4+a2m2R+a3R2)Jg(X)dnx (3.19) 

where a l ,  az ,  a3 are, as can be readily verified, real quantities depending only on n and 
having poles at n = 4. Thus (3.17) corresponds to a renormalisation of the coupling 
constants in a modified form of Einstein’s equation. 

In paper I we introduced a generalisation of normal ordering to curved space-time 
and we have continued to make use of this procedure in the present paper. However, 
we have found that normal ordering is not sufficient to remove all divergences from 
vacuum-to-vacuum diagrams and renormalisation of coupling constants is required to 
remove the remaining divergences. In retrospect, it is clear that this renormalisation of 
the gravitational action could have been used to renormalise vacuum-to-vacuum 
processes even if normal ordering had not been performed. However, as we found in 
paper I normal ordering is sometimes a very convenient procedure to use and its 
physical justification is given by this equivalence to the renormalisation of gravitational 
coupling constants. 
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Appendix. Evaluation of divergences in G3(x, x’) 

It was shown in $ 5 of I, on the basis of arguments of Birrell and Taylor (1979), that the 
structure of G3(x, x’) as a distribution in x’, is 

G3(x, x‘) = [corn2 -t- clR +cZGR(.x)]Lf(x, x ’ )  + c30$(x, x’) -I finite term (Al l  

where co, c1, c2 and c3 are functions only of n which have poles at n = 4, $(x, x’) is the 
invariant delta function g-1/2(x’)S(x, x‘), and the finite term is a distribution which maps 
test functions in n dimensims to quantities which are finite when n = 4. In 0 2 of this 
paper, it was shown that the quantity c3 determines the wavefunction renormalisation 
which is to be carried out. This renormalisation is the same for all space-times and so c3 
can be determined from wavefunction renormalisation in Minkowski space-time 
(Collins 1974). We find 

i 
c3 = - 

512n4(n -4)- 

The coefficient of $(x, x’) in (Al )  is given by 

G3(x, x’)Jg(x’) d”x‘. (A3) 

We will evaluate (A3) and thus obtain the coefficients co, c1 and c2. Notice that this 
approach will also serve to verify that the coefficient of d(x, x’) on (Al )  is indeed a linear 
combination of m2, R and GR(x) (at least in conformally flat space-times). 

First express (A3) in terms of c ( x ,  x‘) which is given by (1.4) and (1.16): 

(x’) d”x’. (A41 I G3(x, x’)C”’~(X’) d“x’ = C 3(2-n)/4 (x) I G3(x, X ~ ) ~ ( 6 - n ) / 4  

Now expand C(6-n)’4 (x‘) about x’ = x;  then (A4) becomes 

I G3(x, x’)C”/’(x‘) d”x’ 

But 

where 

G(.x, x’) = Il(X, x’) +I&, x’) +F(x ,  

d“k exp[ik(x’-x)] 
I1(x,x’)=i - I (27r)” k2-M2 
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Therefore 

I c3(x ,  x‘) dnx’ 

a 
am 

= 1 I;(x, x’) d“x‘+ ( [ - t ( n ) ) R y  I K:(x, x’) dnx’ 

+ 3 I?(x ,  x’)F(x, x‘) d“x‘ +finite terms. (‘4 10) I 
The first integral can be determined from Minkowski space-time (see, for example, 
Collins 1974). The result obtained is 

Moreover, we know that 

(X’)S(X, x’) i ~ ( n - 4 ) / 2  K ? ( x ,  x’) E-------- 

8 r 2 ( n  -4) 

since this is the divergent part of the distribution c’(x, x’). Hence, from (A9)-(A12), 
we obtain: 

J G3(x, x ’ )  dnx’ 

3i 3i 
128.rr4(n -4)’-256r4(n -4) = c n - 3 ( X  j[ ( -)[m2 + (8 - ~ ) R I  

iH(x) + t 
1536.rr4(n -4) 8.rr2(n -4) 1‘413) 

Finally, consider the contribution from the second term in ( ‘ 45 ) .  We can write 

(j3(x, x’) ~ 3 ( n - 2 ) / 4  ( , )c3(“-2) /4  (x’)G3(x, x’) 

= [com’+clR + C ~ G R ] C ~ - ~ ( X ’ ) S ( X ,  x’) 

( x  ’)U’( c -“/2 (x ’ )S (x, x ’)) . (‘414) + C 3 ~ 3 ( n - 2 ) / 4  (x) ~ 3 ( n  - W 4  

The second term in (A5) is then 

$(6 - n)C‘6-n’/4 (x)[C-’a,a,C +$(2 - n)C-’d,Cd,C] 

xc3 I ( X ’ - X ) y X ’ - X ) T 3 ( n - ’ ) ’ 4  (X’)U’(C-”/~S(X, x ‘ ) )  dnx’. (‘4151 

The integral in (A15) is simply 

(x’)]C-‘’/*(x’)S(x, x’) dnx’ = 2gcruC(n-6)/4 (X) .  
V&V &[ (x ’ - x)’ (x’ - X ) Y C 3 ( n  -’)I4 

(‘416) 
I 
Thus (A15) reduces to 

$c3(6- n)~11Y[C-2~~La ,C+$(2-n )C-3~ ,C~ ,C]  1-417) 

R = (n - f ) ~ ~ ” [ C - ’ ~ , d , C + ~ ( n  -6)C-3d,Ca,C]. 
but 

(A181 
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Thus (A17) may be written as 

Using (A2), the divergence in (A19) is just 

iR 
3072.rr4(n -4)’ 

- 

Therefore, the constants co, c1 and c2 are: 

3i 3i 
CO = 
, 128?r4(n -4)’-256?r4(n -4) 

1 i 
c1= i h ) C O + 3 0 7 2 ? r 4 ( n  -4) 

3i 
8.rr2(n -4)’ 

c2 = 
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